Lessons from Clinical Trials 2009: Lessons and Future Perspectives

D. Scheinert, MD Department of Angiology Park Hospital & Heart Center Leipzig, Germany

Presenter Disclosure Information

Name: Dierk Scheinert MD

Within the last 12 months, the presenter or their spouse/partner have had a financial interest/arrangement or affiliation with the organizations listed below.

AbbottAdvisory BoardBoston ScientificAdvisory BoardCordisAdvisory BoardNovostentAdvisory BoardAngioslideAdvisory BoardGardia MedicalAdvisory BoardGardia MedicalAdvisory BoardRevascular TherapeuticsAdvisory BoardMinnow MedicalConsultantLutonixConsultantAtheromedConsultantAngioscoreConsultantCook MedicalConsultantInvatecConsultantEv3ConsultantPathway MedicalConsultantIDEV Techn.StockholderCSIStockholder	<u>Company</u>	Relationship	<u>)</u>
Boston ScientificAdvisory BoardCordisAdvisory BoardNovostentAdvisory BoardAngioslideAdvisory BoardGardia MedicalAdvisory BoardGardia MedicalAdvisory BoardRevascular TherapeuticsAdvisory BoardMinnow MedicalConsultantLutonixConsultantAtheromedConsultantAngioscoreConsultantCook MedicalConsultantInvatecConsultantEv3ConsultantPathway MedicalConsultantIDEV Techn.StockholderCSIStockholder	Abbott		Advisory Board
CordisAdvisory BoardNovostentAdvisory BoardAngioslideAdvisory BoardGardia MedicalAdvisory BoardGardia MedicalAdvisory BoardRevascular TherapeuticsAdvisory BoardMinnow MedicalConsultantLutonixConsultantAtheromedConsultantAngioscoreConsultantCook MedicalConsultantInvatecConsultantEv3ConsultantPathway MedicalConsultantIDEV Techn.StockholderCSIStockholder	Boston Scientific		Advisory Board
NovostentAdvisory BoardAngioslideAdvisory BoardGardia MedicalAdvisory BoardGardia MedicalAdvisory BoardRevascular TherapeuticsAdvisory BoardMinnow MedicalConsultantLutonixConsultantAtheromedConsultantAngioscoreConsultantCook MedicalConsultantInvatecConsultantEv3ConsultantPathway MedicalConsultantIDEV Techn.StockholderCSIStockholder	Cordis		Advisory Board
AngioslideAdvisory BoardGardia MedicalAdvisory BoardRevascular TherapeuticsAdvisory BoardMinnow MedicalConsultantLutonixConsultantAtheromedConsultantAngioscoreConsultantCook MedicalConsultantInvatecConsultantEv3ConsultantPathway MedicalConsultantIDEV Techn.StockholderCSIStockholder	Novostent		Advisory Board
Gardia MedicalAdvisory BoardRevascular TherapeuticsAdvisory BoardMinnow MedicalConsultantLutonixConsultantAtheromedConsultantAngioscoreConsultantCook MedicalConsultantInvatecConsultantEv3ConsultantPathway MedicalConsultantIDEV Techn.StockholderCSIStockholder	Angioslide		Advisory Board
Revascular TherapeuticsAdvisory BoardMinnow MedicalConsultantLutonixConsultantAtheromedConsultantAngioscoreConsultantCook MedicalConsultantInvatecConsultantEv3ConsultantPathway MedicalConsultantIDEV Techn.StockholderCSIStockholder	Gardia Medical		Advisory Board
Minnow MedicalConsultantLutonixConsultantAtheromedConsultantAngioscoreConsultantCook MedicalConsultantInvatecConsultantEv3ConsultantPathway MedicalConsultantIDEV Techn.StockholderCSIStockholder	Revascular Thera	apeutics	Advisory Board
LutonixConsultantAtheromedConsultantAngioscoreConsultantCook MedicalConsultantInvatecConsultantEv3ConsultantPathway MedicalConsultantIDEV Techn.StockholderCSIStockholder	Minnow Medical		Consultant
AtheromedConsultantAngioscoreConsultantCook MedicalConsultantInvatecConsultantEv3ConsultantPathway MedicalConsultantIDEV Techn.StockholderCSIStockholder	Lutonix		Consultant
AngioscoreConsultantCook MedicalConsultantInvatecConsultantEv3ConsultantPathway MedicalConsultantIDEV Techn.StockholderCSIStockholder	Atheromed		Consultant
Cook MedicalConsultantInvatecConsultantEv3ConsultantPathway MedicalConsultantIDEV Techn.StockholderCSIStockholder	Angioscore		Consultant
InvatecConsultantEv3ConsultantPathway MedicalConsultantIDEV Techn.StockholderCSIStockholder	Cook Medical		Consultant
Ev3ConsultantPathway MedicalConsultantIDEV Techn.StockholderCSIStockholder	Invatec		Consultant
Pathway MedicalConsultantIDEV Techn.StockholderCSIStockholder	Ev3		Consultant
IDEV Techn. Stockholder CSI Stockholder	Pathway Medical		Consultant
CSI Stockholder	IDEV Techn.		Stockholder
	CSI		Stockholder

Carotid Artery Revascularization

New Data from two RCT:

- ICSS
- CREST

The Discussion continues !

ICSS-STUDY

- 1713 patients randomized 1:1 CAS vs. CEA
- Major Inclusion Criteria:
 - sympt. Stenosis >50%
- Primary Endpoint:
 - Composite of Death, Stroke, MI @ 120 days

	CAS	CEA	р
Death+ Major Stroke	4.0%	3.2%	ns

ICSS: Death + Stroke + MI

Brown M, 2009

Minimal Endovascular Requirements in the CAS vs. CEA Randomized trials >300 Patients

CAVATAS ⁴¹	Training in neuroradiology and angioplasty (but not necessarily in the carotid · artery) required. Tutor-assisted procedures allowed.©
SAPPHIRE ⁴⁰	Procedures submitted to an executive review committee; CAS periprocedural · death or stroke rate had to be <6%.¶ No tutor-assisted procedures allowed.♡
SPACE ^{42, 51} 0	At 25 successful CAS or assistance of a tutor for interventionalists having performed at least 10 CAS.
EVA-3S ⁴³ ¤	≥ 12 CAS cases or ≥ 5 CAS and ≥ 30 cases of endovascular treatment of supra-aortic trunks. Tutor-assisted CAS allowed for centers not fulfilling minimal requirements.
ICSS ⁴⁴ ○	A minimum of 50 total stenting procedures, of which at least 10 should be in · the carotid artery. Tutor-assisted procedures allowed for interventionalists · with insufficient experience.a

4/5 trials allowed for minimal expertise of 10 CAS and tutoring

Roffi M et al. EHJ 2009;30:2693-2704

CREST-STUDY

- Major Inclusion Criteria
 - asympt. Stenosis >60% angio, >70 duplex
 - sympt. Stenosis >50% angio, >70% duplex
- Primary Endpoint:
 - Composite of Death, Stroke, MI

	CAS	CEA	р
Periprocedural	5.2%	4.5%	0.38
Up to 4 years	7.2%	6.8%	0.51

CREST-STUDY

Periprocedural Complications:

	CAS	CEA	р
Stroke	4.1%	2.3%	0.01
MI	1.1%	2.3%	0.03

Final publication expected April/ May 2010

Renal Arteries + Hypertension

- Astral Study
- New Concept: Renal Denervation

UK MULTI-CENTRE TRIAL IN ATHEROSCLEROTIC RENOVASCULAR DISEASE

Angioplasty and STent for Renal Artery Lesions

ASTRAL

Philip A Kalra

Lead Nephrologist for ASTRAL, Hope Hospital, Salford, UK,

On behalf of the ASTRAL TMC and collaborators

ASTRAL Trial Schema

PLOT OF SCr OVER TIME

PLOT OF SYSTOLIC BP OVER TIME

COMPLIANCE WITH RANDOMISED TREATMENT

	Ν	Revasc. Successful	Attempted but Failed	Not Attempted
Revasc.	403	308 (82%)*	17	44
Medical	403	18 (4.4%)	1	1

*Revascularization forms not yet returned for 34 patients who were randomised to revascularization

PATIENT CHARACTERISTICS – Percent Stenosis

Mean = 76% (Range: 20% – 100%)

ASTRAL Summary (1)

- I. Currently no evidence of a benefit for revascularization on renal function in the ARVD patients entered into ASTRAL those in whom clinicians 'uncertain' of whether to revascularize
- II. ...

... but maybe there is an advantage for patients with high-grade lesions ?? The Discussion continues !

Anatomy of Renal Sympathetic Nerves

Arise from T10-L2 Follow the renal artery to the kidney Primarily lie within the adventitia

Renal Denervation by RF-Ablation

In the United States: Caution: Investigational Device. Limited by U.S. law to investigational use.

Study Aims:

To perform a first-in-man 12-month evaluation of the safety and blood pressure-lowering efficacy of percutaneous renal sympathetic denervation in patients with refractory hypertension Study Sites:

Melbourne & Newcastle, Australia; Krakow, Poland; & Frankfurt, Germany

Blood Pressure Response

Originally Reported Cohort (N=45)

Krum et al. TCT 2009

Peripheral Arteries

- VIBRANT-Trial: Nitinol Stent vs. Covered Stent for long lesions
- Drug-eluting Stents:
 ZILVER PTX Registry and RCT
- New Concepts:
 SUPERA Registry
 Drug-Eluting Balloons (THUNDER and FEMPAC)

Study Design

- 148 randomized patients enrolled
- TEST GROUP: GORE VIABAHN[®] Endoprosthesis
 - FDA approved for SFA indication, June 14, 2005
 - Does not include Bioactive Heparin Surface or contoured edge device
 - n = 72
- CONTROL GROUP: Bare Nitinol Stent
 - Commercially available bare nitinol stent as determined by institutional standard of care when treating SFA occlusive disease and were not devices approved for SFA use
 - n = 76

Lesion Characteristics: Diffuse and complex

LESION CHARACTERISTICS				
	GORE VIABAHN® Endoprosthesis	Bare Nitinol Stent	p-value	
TREATED OCCLUSIONS	59.7%	56.6%	0.74	
TARGET LESION LENGTH (cm)			0.87	
Mean (Std Dev)	19 (8)	18 (7)		
Median (Range)	20 (8 – 40)	16 (8 – 36)		
LESION CALCIFICATION			0.01	
None – Mild	37.5%	57.9%		
Moderate – Severe	62.5%	42.1%		
TIBIAL RUNOFF			0.10	
1 Vessel	15.3%	22.4%		
2 Vessel	50.0%	32.9%		
3 Vessel	34.7%	44.7%		

One-Year Interim Data

INTERIM ONE-YEAR EFFICACY OUTCOMES

	GORE VIABAHN [®] Endoprosthesis	Bare Nitinol Stent	p-value
Technical Success	97%	97%	1.00
Primary Patency (PSVR 2.5)	53%	58%	0.58
Freedom from TLR	73%	69%	0.69
Assisted Primary Patency	84%	91%	0.41
Secondary Patency	93%	98%	0.19

Stent Fracture

	GORE VIABAHN [®] Endoprosthesis	Bare Nitino l Ston t	p-value
STENT FRACTURE	1/47 (2%)	16/52 (30.8%)	< 0.01
FRACTURE SEVERITY*			
Grade 1	1	7	
Grade 2	0	7	
Grade 3	0	3	
Grade 4	0	2	

Stent Fracture by Length

* Not mutually exclusive

CLINICAL STUDY

The Zilver-PTX Clinical Trial Program

LINC 2010 Wednesday, January 27, 2010

Michael Dake, M.D. Professor of Cardiothoracic Surgery Stanford University School of Medicine Falk Cardiovascular Research Center Stanford University Medical Center

Zilver[®] PTX[®] Drug-Eluting Stent

- CE Marked
- Paclitaxel only
 - No polymer or binder
 - 3 μ g/mm² dose density
- Zilver[®] Flex[™] Platform

ZILVER PTX

Baseline Angiographic Data

Overall Lesions (n)	818
Lesion Length (cm)	9.9 ± 8.2
Proximal RVD (mm)	5.4 ± 0.9
Distal RVD (mm)	5.2 ± 0.8
MLD in Lesion (mm)	0.8 ± 0.9
% Diameter Stenosis	85 ± 17

Patients	718
Lesions	818
TASC Class*: A	26%
В	29%
С	26%
D	14%
Lesion > 7 cm	47%
Lesion > 15 cm	22%
Total Occlusion	38%
Restenosis (all)	24%
In-stent Restenosis (ISR)	15%

Effectiveness: Freedom from TLR

	12 Months	24 Months
Freedom from TLR	(n = 818)	(n = 427)
	89%	82%
	(725/818)	(351/427)

Target Lesion Revascularization (TLR) defined as:

- Clinically driven re-intervention for ≥ 50% DS within treated segment (including +/- 5 mm)
- Surgical bypass of target vessel

Freedom from TLR

Cubaroup	12 Months	24 Months			
quorgaue	12 Months	24 Wonths			
Overall	89% (n = 818)	82% (n = 427)			
De novo (all)	91%	88%			
< 7 cm Lesions	94%	91%			
> 7 cm to 15 cm Lesions	92%	86%			
> 15 cm Lesions	84%	80%			
TASC C and D*	87%	78%			
Occlusions	86%	77%			
Freedom from TLR ≠ Patency					
Restenosis (all)	81%	70%			
Restenosis (not ISR)	87%	73%			
In-stent Restenosis (ISR)	78%	69%			
*TASC 2000					

ZILVER PTX

THUNDER Trial

Design	Prospective, Randomized, 'Blinded,' Multi-Center Drug Coated Balloon vs. Standard Uncoated Balloon
Endpoints	1 [°] : Late Lumen Loss at 6 months 2 [°] : Binary restenosis, TLR, etc.
Major Inclusion	SFA/APOP: Occlusion or Stenosis \geq 70%, \geq 2cm_ length Rutherford 1-5
Major Exclusion	Distal run-off < 1 artery, PTA directly at promixal SFA origin, known allergy to contrast media/antithrombotics
# Patients	102 Patients : 54 POBA, 48 DCB
Follow-Up	24 Months
Lead Investigator	Gunnar Tepe

Tepe et al., NEJM 2008; 358:689-99

THUNDER: Baseline Characteristics

Characteristic	POBA (n=54) DCB (n=48)	
Age	68	69
Rutherford Stage	3.1	3.4
Lesion Length (mm)	7.4	7.5
SFA ONLY – no popliteal involvement (%)	65	69
Stenosis (%)	91	89
Occlusion (%)	26	27
Treated Lesions (#)	1.6	1.8
De Novo Lesion (%)	70	62

Tepe et al., NEJM 2008; 358:689-99

THUNDER: Outcomes

6 Month Angio	POBA (n=48)	DCB (n=41)	Р
Late Lumen Loss , mm	1.7 ± 1.8	0.4 ± 1.2	< 0.001
RVD, mm	4.9 ± 0.6	5.1 ± 0.6	0.05
MLD, mm	2.8 ± 1.9	4.1 ± 1.4	0.001
Binary Restenosis (%)	44	17	0.01

TLR	POBA (n=54)	DCB (n=48)	Р
6 Month (%)	37	4	<0.001
12 Month (%)	48	10	<0.001
24 Month (%)	52	15	<0.001

Tepe et al., NEJM 2008; 358:689-99

FemPac Trial

Design	Prospective, Randomized, Multi-Center, 'Blinded Reading' Drug Coated Balloon vs. Conventional Uncoated Balloon
Endpoints	1 [°] : Late Lumen Loss at 6 months 2 [°] : Binary restenosis, TLR, etc.
Major Inclusion	SFA/APOP: Occlusion or Stenosis \geq 70%, Rutherford 1-5
Major Exclusion	Distal run-off < 1 artery, acute symptoms indicating thrombolysis or surgery, allergy to contrast or study meds
# Patients	87 Patients : 42 POBA, 45 DCB
Follow-Up	18-24 Months
Lead Investigator	Michael Werk

Werk et al., CIRC 2008; 118:1358-1365

FemPac: Baseline Characteristics

Characteristic	POBA (n=42)	DCB (n=45)
Age	70.2	67.3
Rutherford Stage	2.9	2.7
Lesion Length (mm)	4.7	4.0
SFA ONLY – no popliteal involvement (%)	81	87
Stenosis (%)	85	85
Occlusion (%)	19	13
De Novo Lesion (%)	67	64

Werk et al., CIRC 2008; 118:1358-1365

FemPac: Outcomes

6 Month Angio	POBA (n=48)	DCB (n=41)	Р	
Late Lumen Loss , mm	0.8 0.3		0.031	
RVD, mm	5.1	5.2	0.62	
MLD, mm	2.7	3.6	0.037	
Binary Restenosis (%)	47	19	0.035	

TLR	POBA (n=54)	DCB (n=48)	Р
6 Months (%)	33	7	0.002
18-24 Months (%)	50	13	0.001

Werk et al., CIRC 2008; 118:1358-1365

But: Some DCBs work, others do NOT

Success:

TLR at 2 years						
Indication	<u>Study</u>	Formulation	<u>DCB</u>	<u>POBA</u>	<u>TAXUS</u>	
Coronary ISR	Paccocath ISR I & II ^{1,2}	Paclitaxel + Iopromide	4%	37%		
	PEPCAD II ^{3*}		6%		15%	
SFA	THUNDER ^₄		15%	52%		
	FemPac⁵		13%	50%		

¹Scheller 2006 *NEJM* 355(20):2113-24. ²Scheller 2008 *Clin Res Cardiol 97(10):773-81*. ³Unverdorben 2009 *ClRC 119(23):2986-94*; *TLR at 1 years for PEPCAD II; follow-up ongoing but only 12 month data reported. ⁴Tepe 2008 *NEJM* 358(7):689-99. ⁵Werk 2008 *ClRC* 118:1358-65.

Failure:

TLR at 9 months					
Indication Study OCB TAXUS CYPHER					
Small Vessel CAD	Piccoleto ^{6*}	Paclitaxel <u>Alone</u>	32%	10%	
		DCB w/Pre-crimped			
DeNovo CAD	PEPCAD III ⁷	<u>stent</u> vs DES	11%		5%

⁶Cortese 2009 PCR Presentation: Paclitaxel-eluting balloon versus paclitaxel-eluting stent in small coronary vessel disease; *TLR at 6 months for Piccoleto. ⁷Hamm 2009 AHA resentation: Paclitaxel-eluting PTCA-Balloon in Combination with the Coroflex Blue Stent vs the Sirolimus Coated Cypher Stent in the Treatment of Advanced Coronary Artery Disease

Essential Components of DEB

Active Agent

Paclitaxel

Additive

- Controls coating integrity and drug loss during transit
- Facilitates tissue uptake: increases exposure, accelerates drug release & transfer to vessel wall
- Necessary to achieve therapeutic drug levels

Active PVD Studies

(as registered with clinicaltrials.gov)

I. SFA Indication

- Advance® 18PTX (Cook)
- LEVANT I (Lutonix)

II. BTK Indication

- INPACT-DEEP (Invatec)
- PICCOLO